Answer:
x= 260, y= 400
Explanation:
Cost of mobile phone= x pounds
Cost of television= y pounds
When both prices are increased by £40,
cost of mobile phone= £(x +40)
cost of television= £(y +40)
![(x + 40)/(y + 40) = (15)/(22)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qaegm8l0bhy12lttckorh8m50k7mq2jobh.png)
Cross multiply:
15(y +40)= 22(x +40)
Expand:
15y +600= 22x +880
-600 on both sides:
15y= 22x +280 -----(1)
When both prices decreased by £100,
cost of mobile phone= £(x -100)
cost of television= £(y -100)
![(x - 100)/(y - 100) = (8)/(15)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jwhpoxjhuupd7m1xsv5y2hy09nnjjb8k94.png)
Cross multiply:
15(x -100)= 8(y -100)
15x -1500= 8y -800 (expand)
15x= 8y -800 +1500 (+1500 on both sides)
15x= 8y +700 (simplify)
-----(2)
Subst. (2) into (1):
![15y = 22( (8)/(15) y + (140)/(3) ) + 280](https://img.qammunity.org/2021/formulas/mathematics/high-school/9w045gju7sic241zpf3lqbpydga53webgk.png)
Expand:
![15y = (176)/(15) y + (3080)/(3) + 280 \\ 15y - (176)/(15) y = (3080)/(3) + 280 \\ (49)/(15) y = (3920)/(3) \\ y = (3920)/(3) / (49)/(15) \\ y = 400](https://img.qammunity.org/2021/formulas/mathematics/high-school/bh8lfuzq3v97zkbk5400czjarm6x7k1f64.png)
Subst. y=400 into (2):
![x= (8)/(15) (400) + (140)/(3) \\ x = (640)/(3) + (140)/(3) \\ x = (780)/(3) \\ x = 260](https://img.qammunity.org/2021/formulas/mathematics/high-school/wcvptod2iv4tm3r38a6v6g24nml64hs0c1.png)