221k views
8 votes
What is the simplest radical form of the expression?

(8x^7y^4)^2/3

2 Answers

0 votes

Expand
\bf{(8x^(7)y^(4))^{(2)/(3) } }


\bf{8^{(2)/(3) }(x^(7))^{(2)/(3) }(y^(4))^{(2)/(3) } }

To raise a power to another power, multiply the exponents. Multiply 7 and 2/3 to get 14/3.


\bf{8^{(2)/(3)}x^{(14)/(3) }(y^(4))^{(2)/(3) } }

To raise a power to another power, multiply the exponents. Multiply 4 and 2/3 to get 8/3.


\bf{8^{(2)/(3)}x^{(14)/(3) }y^{(8)/(3) } }

Calculate 8 to the power of 2/3 and you get 2/4.


\bf{4x^{(13)/(4) }y^{(8)/(3) } \ \ ==== > \ \ \ Answer }

User PatrickT
by
4.9k points
10 votes

Answer:


\large \text{$ 4 x^{(14)/(3)}y^{(8)/(3)}$}

Explanation:

Given expression:


(8x^7y^4)^{(2)/(3)}


\textsf{Apply exponent rule} \quad (a \cdot b)^c=a^(c) \cdot b^(c):


\implies 8^{(2)/(3)} \cdot (x^7)^{(2)/(3)}\cdot(y^4)^{(2)/(3)}


\implies 4 \cdot (x^7)^{(2)/(3)}\cdot(y^4)^{(2)/(3)}


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 4 \cdot x^{(14)/(3)}\cdot y^{(8)/(3)}


\implies 4 x^{(14)/(3)}y^{(8)/(3)}

User Janjust
by
5.5k points