Answer:
84.37 %.
Explanation:
The question is shown in the attached figure.
We have,
![f(t)=2t^3+10,\ t=3](https://img.qammunity.org/2021/formulas/mathematics/college/n2to468ct07osi0w4grxwgepga68y8jt2o.png)
We can find the value of f(t) at t = 3,
![f(3)=2(3)^3+10\\\\f(3)=64](https://img.qammunity.org/2021/formulas/mathematics/college/6kt0tfi1nb34qydy6lr9qxckz3yv9kvez7.png)
Finding f'(t).
![f'(t)=6t^2](https://img.qammunity.org/2021/formulas/mathematics/college/ndggpdkbgjlsbkovispfro5xe12z9cdw8d.png)
Finding f'(t) at t = 3
![f'(3)=6(3)^2\\\\=54](https://img.qammunity.org/2021/formulas/mathematics/college/1gyb9xjssvzgp7mf0m3drripopn0dndgzo.png)
The relative change is calculated as :
![(f'(t))/(f(t))=(54)/(64)\\\\=0.8437](https://img.qammunity.org/2021/formulas/mathematics/college/xwacpkehydfdusw5okjgav349eus98ekba.png)
In percentage rate of change,
![(f'(t))/(f(t))=0.8437* 100\\\\=84.37\%](https://img.qammunity.org/2021/formulas/mathematics/college/tq4gljcnwt9suqz4gyj987lpl48h4spo98.png)
Hence, the required percent change is 84.37 %.