Answer:
The answer is below
Step-by-step explanation:
Let g = acceleration due to gravity = 9.81 m/s², x = half of the width of the crate, half of the height of the crate = 0.5 m, a = acceleration of crate, N = force raising the crate
The sum of moment is given as:

Sum of vertical forces is zero, hence:

Sum of horizontal force is zero, hence:

Solving equation 1, 2 and 3 simultaneously gives :
N = 447.8 N, a = 2.01 m/s², x = 0.25 m
x is supposed to be 0.3 m (0.6/2)
The crate would slip because x <0.3 m