100k views
0 votes
(4/16^(y_2)×(1/4)^y=64(^_2y_1)
Find the value of y?

1 Answer

4 votes


4 * {16}^( - (y - 2) ) * {4}^( - y) = ({4})^{ ({3})^( (- 2y - 1)) } \\


4 * ({4})^{ ({2})^((y - 2)) } * {4}^( - y) = {4}^( - 6y - 3)


4 * {4}^((2y - 4)) * {4}^( - y) = {4}^( - 6y - 3)


{4}^(1 + 2y - 4 - y) = {4}^( - 6y - 3) \\


{4}^(y - 3) = {4}^( - 6y - 3)

Thus ;


y - 3 = - 6y - 3

Plus sides 3


y - 3 + 3 = - 6y - 3 + 3


y = - 6y

Plus sides 6y


y + 6y = - 6y + 6y


7y = 0

Divided sides by 7


(7)/(7)y = (0)/(7) \\


y = 0

_________________________________

Check :


0 - 3 = - 6(0) - 3


- 3 = 0 - 3


- 3 = - 3

Thus this is the correct value.

Done.....♥️♥️♥️♥️♥️

User Nickhar
by
6.0k points