46.4k views
18 votes
Evaluate: lim x -> ∞ (sqrt(x ^ 2 + 1))/(x + 1)​

User Nimdil
by
5.0k points

1 Answer

4 votes

Answer:


\lim_(x\rightarrow +\infty ) \frac{\sqrt{x^(2)+1} }{x+1}=1

Explanation:


\lim_(x\rightarrow +\infty ) \frac{\sqrt{x^(2)+1} }{x+1}


=\lim_(x\rightarrow +\infty ) \frac{\sqrt{x^(2)\left( 1+(1)/(x^2) \right) } }{x+1}


=\lim_(x\rightarrow +\infty ) \frac{\sqrt{x^(2)} \sqrt{\left( 1+(1)/(x^2) \right) } }{x+1}


=\lim_(x\rightarrow +\infty ) \frac{|x|\sqrt{\left( 1+(1)/(x^2) \right) } }{x+1}


=\lim_(x\rightarrow +\infty ) \frac{x\sqrt{\left( 1+(1)/(x^2) \right) } }{x(1+(1)/(x)) }


=\lim_(x\rightarrow +\infty ) \frac{\sqrt{\left( 1+(1)/(x^2) \right) } }{(1+(1)/(x)) }


=(√(1) )/(1)


=1

Remark :


\lim_(x\rightarrow +\infty ) (1)/(x) =0=\lim_(x\rightarrow +\infty ) (1)/(x^2)

User Whaledawg
by
4.3k points