36.3k views
1 vote
Find the slope of the line that passes through:
(-4, 7) and (-6, - 4)

User Jichi
by
6.3k points

1 Answer

7 votes

Answer:


\huge{ \bold{ \boxed{ \tt{ (11)/(2) }}}}

Explanation:


\text{Let \: the \: points \: be \: A\: and \: B}


\text{A \: ( - 4 \:, 7 \: )} \longrightarrow \: \text{(x1 \:, y1)}


\text{B \: ( \: - 6 \:, - 4 \: )} \longrightarrow \text{(x2 \:, y2)}


\underline{ \text{Finding \: the \: slope} }:


\boxed{ \sf{slope = (y2 - y1)/(x2 - x1) }}


↣ \: \sf{slope = ( - 4 - 7)/( - 6 - ( - 4)) }


\underline{ \text{Remember}} :


  • \text{ \: ( + ) * ( + ) = ( + )}

  • \text{( + ) \: * \: ( - ) = ( - )}

  • \text{( - ) \: * \: ( - ) = ( + )}

  • \text{( - ) \: * \: ( + ) = ( - )}


\sf{↣ \: slope \: = \: ( - 4 - 7)/( - 6 + 4)}


\underline{ \text{Remember}}:

  • The positive integers are always added but posses the positive ( + ) sign.
  • The negative integers always added but posses the negative ( - ) sign.
  • The negative and positive integers are always subtracted but posses the sign of the bigger integer.


\sf{↣ \: slope = ( - 11)/( - 2) }


\sf{↣ \: slope \: = \frac{ \cancel{ - } \: 11}{ \cancel{ - } \: 2} }


\sf{↣ \: slope \: = (11)/(2) }


\text{Hope \: I \: helped!}


\text{Best \: regards!}

~
\text{TheAnimeGirl}

User Biz
by
6.2k points