15.2k views
1 vote
In order to determine whether or not there is a significant difference between the mean hourly wages paid by two companies (of the same industry), the following data have been accumulated. Company A Company B Sample size 80 60 Sample mean $16.75 $16.25 Population standard deviation $1.00 $.95 The p-value is a. .0084. b. .0042. c. .0026. d. .0013

User Aadishri
by
8.7k points

1 Answer

2 votes

Answer:

The correct option is C

Explanation:

From the question we are told that

The sample size for company A is
n_1 = 80

The sample size for company B is
n_2 =  60

The sample mean for A is
\= x _1  = \$16.75

The sample mean for B is
\= x _2  =  $16.25

The population standard deviation for A is
\sigma_1 =  \$1.00

The population standard deviation for B is
\sigma_1 = \$ 0.95

The null hypothesis is
H_o :  \mu_1 - \mu_2 = 0

The null hypothesis is
H_o :  \mu_1 - \mu_2 \\e 0

Generally the test statistics is mathematically represented as


z =  \frac{ \= x_1 - \= x_2}{ \sqrt{( \sigma_1^2)/(n_1) + ( \sigma_2^2)/(n_2) } }

=>
z  =  \frac{ 16.75 - 16.25}{ \sqrt{( 1.00^2)/(80) + ( 0.95^2)/(60) } }

=>
z  =  3.01283186

Generally from the normal distribution table the probability of z


P(t > z) = 0.0013

Gnerally the p-value is mathematically represented as


p-value  =  2 *  P(z > 3.0 )

=>
p-value  =  2 *  0.0013

=>
p-value  =  0.0026

User Jblack
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories