Answer:
P(Y=1|X=3)=0.125
Explanation:
Given :
p(1,1)=0
p(2,1)=0.1
p(3,1)=0.05
p(1,2)=0.05
p(2,2)=0.3
p(3,2)=0.1
p(1,3)=0.05
p(2,3)=0.1
p(3,3)=0.25
Now we are supposed to find the conditional mass function of Y given X=3 : P(Y=1|X=3)
P(X=3) = P(X=3,Y=1)+P(X=3,Y=2) +P(X=3,Y=3)
P(X=3)=p(3,1) +p(3,2) +p(3,3)
P(X=3)=0.05+0.1+0.25=0.4
![P(Y=1|X=3)=(P(X=3,Y=1))/(P(X=3)) =(p(3,1))/(P(X=3))=(0.05)/(0.4)= 0.125](https://img.qammunity.org/2021/formulas/mathematics/college/47ni8c1wzr8sv88tiypudu0cjcdkc3rn6e.png)
Hence P(Y=1|X=3)=0.125