Answer:
21 different ways
Step-by-Step-Explanation:
There are eight horses,
We are going to call horse 1; H1
Horse 2: H2
Horse 3: H3
And so on..
How many different combinations of (H(?), H(?), H(?)) turn out?
1. H1, H2, H3
2. H1, H3, H4
3. H1, H4, H5
4. H1, H5, H6
5. H1, H6, H7
6. H1, H7, H8
7. H2, H3, H4
8. H2,H4, H5
9. H2, H5, H6
10. H2, H6, H7
11. H2, H7, H8
12. H3, H4, H5
13. H3, H5, H6
14. H3, H6, H7
15. H3, H7, H8
16. H4, H5, H6
17. H4, H6, H7
18. H4, H7, H8
19. H5, H6, H7,
20. H5, H7, H8
21. H6, H7, H8