![4(2q - 3) = 8q - 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/scdqrwesvfxkg46ph5lmqmj804hn4po79f.png)
![8q - 12 = 8q - 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/m2mh7g8f6r66w5dgn2k2py0yambzuqxhoc.png)
![8q + - 12 = 8q + - 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/ckf3orkjeicgpxfug5dkmmnmnsqalcwzch.png)
![- 12 - 8q = - 12 - 8q](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2gstasgn8l930lxibozpp8sir61pm1ebz.png)
![- 12 = - 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/fd28aiee01vy19xpfe7rgvmvpdpem94o0v.png)
![- 12 + 12 = - 12 + 12](https://img.qammunity.org/2021/formulas/mathematics/high-school/zefhgr7y5xska8jqdne0uvjdgqgojz771x.png)
![0 = 0](https://img.qammunity.org/2021/formulas/physics/college/qfc3rhmxr5tklf7mn91lygt6hrpzuft0wp.png)
By the above equation , we can conclude that any real number can be placed in the place of q to make the left hand side of the equation become equal to the right hand side of the equation .
Therefore , any real number ( integer , fraction and rational number ) can be placed in the place of q .