120k views
1 vote
In the figure, the measure of angle 9 is 80 degrees and the measure of angle 5 is 68. Find the measure of each angle.

In the figure, the measure of angle 9 is 80 degrees and the measure of angle 5 is-example-1

1 Answer

0 votes

Answer/Step-by-step explanation:

Given:

m<9 = 80°,

m<5 = 68°

Lines w and v are parallel to each other.

m<1 = m<9 (corresponding angles theorem)

m<1 = 80°

m<2 + m<1 = 180° (linear pair)

m<2 + 80° = 180° (substitution)

m<2 = 180° - 80°

m<2 = 100°

m<3 = m<1 (vertical angles are congruent)

m<3 = 80°

m<4 = m<2 (vertical angles are congruent)

m<4 = 100°

m<6 + m<5 = 180° (linear pair)

m<6 + 68° = 180° (substitution)

m<6 = 180° - 68°

m<6 = 112°

m<7 = m<5 (vertical angles)

m<7 = 68°

m<8 = m<6 (vertical angles)

m<8 = 112°

m<10 = m<2 (corresponding angles)

m<10 = 100°

m<11 = m<9 (vertical angles)

m<7 = 80°

m<12 = m<10 (vertical angles)

m<12 = 100°

m<13 = m<5 (corresponding angles)

m<13 = 68°

m<14 = m<6 (corresponding angles)

m<14 = 112°

m<15 = m<13 (vertical angles)

m<15 = 68°

m<16 = m<14 (vertical angles)

m<16 = 112°

User IXCray
by
5.2k points