87.1k views
4 votes
What is the numerical coefficient of the a^4 b^4 term in the expansion of (1/3a^2 - 2b)^6

enter your answer, in the simplest fractional form, in the box​

User Harshavmb
by
5.4k points

1 Answer

3 votes

Use the binomial theorem:


\left(\frac13a^2-2b\right)^6=\displaystyle\sum_(k=0)^6\binom6k\left(\frac13a^2\right)^(6-k)(-2b)^k=\sum_(k=0)^6\binom6k((-6)^k)/(729)a^(12-2k)b^k

where


\dbinom nk=(n!)/(k!(n-k)!)

is the binomial coefficient.

We get the ab⁴ term when k = 4, which gives the coefficient


\dbinom64((-6)^4)/(729)=\boxed{\frac{80}3}

User Mike Ante
by
5.3k points