113k views
0 votes
Prove tanAsinA + cosA = sec A

1 Answer

5 votes

Answer:

see explanation

Explanation:

Using the trigonometric identities

tanx =
(sinx)/(cosx) , sin²x + cos²x = 1, secx =
(1)/(cosx)

Consider left side

tanAsinA + cosA

=
(sinA)/(cosA) × sinA + cosA

=
(sin^2A)/(cosA) + cosA


(sin^2A+cos^2A)/(cosA)

=
(1)/(cosA)

= secA = right side , thus proven

User Muratgozel
by
5.2k points