Answer:
The value is
![P(| \^ p - p| < 0.05 ) = 0.9822](https://img.qammunity.org/2021/formulas/mathematics/college/usqxat434vd1u6fqrduw69lyzuy3n3m06s.png)
Explanation:
From the question we are told that
The population proportion is
![p = 0.52](https://img.qammunity.org/2021/formulas/mathematics/college/zljf1btm9owiixhp4ywc50j8778b6wbzaj.png)
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as
![\mu_(x) = p = 0.52](https://img.qammunity.org/2021/formulas/mathematics/college/v36t43d2uiacmfa3g5lohnrxh3ofp9hv49.png)
Generally the standard deviation of the sampling distribution is mathematically evaluated as
![\sigma = \sqrt{( p(1- p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/3e20rtlvj63s24uf2p4b8l3t4qnq8ecszq.png)
=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as
![P(| \^ p - p| < 0.05 ) = P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 ))](https://img.qammunity.org/2021/formulas/mathematics/college/fptum7ytmqj04ckdo980noi3u84pajm65m.png)
Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(([[0.05 -0.52]]- 0.52)/(0.02106) < ([\^p - p] - p)/(\sigma ) < ([[0.05 -0.52]] + 0.52)/(0.02106) )](https://img.qammunity.org/2021/formulas/mathematics/college/l1unt0drl80jyzpxzfh78b8z5rchuosw6h.png)
Here
![([\^p - p] - p)/(\sigma ) = Z (The\ standardized \ value \ of\ (\^ p - p))](https://img.qammunity.org/2021/formulas/mathematics/college/je8i4e9sdh657jmiwwvlelygyrk87aioap.png)
=>
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[(-0.47 - 0.52)/(0.02106 ) < Z < (-0.47 + 0.52)/(0.02106 )]](https://img.qammunity.org/2021/formulas/mathematics/college/gvualfpuccr6x4cyy0807uy7mslge2dolg.png)
=>
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://img.qammunity.org/2021/formulas/mathematics/college/istlszykzib3fd40slbjzrovpaec0sal2b.png)
=>
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(Z < 2.37 ) - P(Z < -2.37 )](https://img.qammunity.org/2021/formulas/mathematics/college/enw6g0z33p4ihs0bb7ggmnj7zwrtwrbc9w.png)
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is
![P(Z < 2.37 ) = 0.9911](https://img.qammunity.org/2021/formulas/mathematics/college/2flpdpesi448u9kajxfxs6kgxvepaiko3o.png)
and
![P(Z < - 2.37 ) = 0.0089](https://img.qammunity.org/2021/formulas/mathematics/college/5ua2bi27e2q8qf6s90krc74fdbxf57im3c.png)
So
=>
=>
=>
![P(| \^ p - p| < 0.05 ) = 0.9822](https://img.qammunity.org/2021/formulas/mathematics/college/usqxat434vd1u6fqrduw69lyzuy3n3m06s.png)