Answer:
The average velocity of the stream with a depth of 10 feet is greater.
(a) is correct option.
Step-by-step explanation:
Given that,
Depth
![h_(1)= 10\ feet](https://img.qammunity.org/2021/formulas/physics/college/nk355uml3r70vgdrcw2iws1jj8bhhtoa0i.png)
Depth
![h_(2)=6\ feet](https://img.qammunity.org/2021/formulas/physics/college/lxymzy68abq12zs2bsqzim0pvbhvql55i0.png)
We need to calculate the average velocity of the stream
According to question,
![h_(1) > h_(2)](https://img.qammunity.org/2021/formulas/physics/college/lgx16rz84qflki011ny8nlpftj2q897q6f.png)
The velocity for first case,
![v_(1)=u_(1)(x_(1))/(h_(1))](https://img.qammunity.org/2021/formulas/physics/college/fcey9xa6nt7xh186gid2ttzcid7twx1o7c.png)
![(v_(1))/(x_(1))=(u_(1))/(h_(1))](https://img.qammunity.org/2021/formulas/physics/college/b1m3l019u6lp9rto8vr5fagg043i16malv.png)
The velocity for second case,
![v_(2)=u_(2)(x_(2))/(h_(2))](https://img.qammunity.org/2021/formulas/physics/college/6q2i5qd883cqpk4lligq0beg3aeu29w8go.png)
![(v_(2))/(x_(2))=(u_(2))/(h_(2))](https://img.qammunity.org/2021/formulas/physics/college/psvjaex57agy4hwr0lrl5h04rpf47al8gg.png)
For the same velocity profile,
![(dv)/(dx)=(v_(1))/(x_(1))=(v_(2))/(x_(2))](https://img.qammunity.org/2021/formulas/physics/college/d7n5h2uk8eghr8x8w9m13u5kklg9683c2j.png)
Then,
![(u_(1))/(h_(1))=(u_(2))/(h_(2))](https://img.qammunity.org/2021/formulas/physics/college/94g2rov0h8trfb2jp1xkubybxr949ojuh6.png)
Put the value into the formula
![(u_(1))/(10)=(u_(2))/(6)](https://img.qammunity.org/2021/formulas/physics/college/lern5tp26xo7n4vraaqpymuaizi6sldckh.png)
![u_(1)=(5)/(3)u_(2)](https://img.qammunity.org/2021/formulas/physics/college/3jd4r1fsehmw8ml9xhkqq25fcz1omx4qda.png)
![u_(1)=1.67u_(2)](https://img.qammunity.org/2021/formulas/physics/college/uyewt29ey8g9am2cop6tpn5qm0ifwpkti6.png)
The velocity is
![u_(1) > u_(2)](https://img.qammunity.org/2021/formulas/physics/college/j5yusg3m2fxqzxveu9he3jev2hqz5147aw.png)
We need to calculate the average velocity for first case
Using formula of average velocity
![v_(avg)_(1)=(0+u_(1))/(2)](https://img.qammunity.org/2021/formulas/physics/college/12fqj2x9y15thioh53auacsyd0tn4fs2s2.png)
Put the value into the formula
![v_(avg)_(1)=(0+u_(1))/(2)](https://img.qammunity.org/2021/formulas/physics/college/12fqj2x9y15thioh53auacsyd0tn4fs2s2.png)
![v_(avg)_(1)=(u_(1))/(2)](https://img.qammunity.org/2021/formulas/physics/college/bd5pcxaqdz38cclhuyks5xoh67liour87s.png)
We need to calculate the average velocity for second case
Using formula of average velocity
![v_(avg)_(2)=(0+u_(2))/(2)](https://img.qammunity.org/2021/formulas/physics/college/mhrszp7v2owkd4sezvv3f21i13rb2xi92z.png)
Put the value into the formula
![v_(avg)_(2)=(0+u_(2))/(2)](https://img.qammunity.org/2021/formulas/physics/college/mhrszp7v2owkd4sezvv3f21i13rb2xi92z.png)
![v_(avg)_(2)=(u_(2))/(2)](https://img.qammunity.org/2021/formulas/physics/college/2ro1sbpionbdqw7y9palm95xavku1jxigi.png)
If
then
![(u_(1))/(2) >(u_(2))/(2)](https://img.qammunity.org/2021/formulas/physics/college/6jhlyfu29z9tr30n2ht8s07ql7kcbu18qn.png)
So, we can say that the average velocity of the stream with a depth of 10 feet will be greater than the stream with a depth of 6 feet.
Hence, The average velocity of the stream with a depth of 10 feet is greater.
(a) is correct option.