Answer:
Correct choice: C.
![x=\pm√(10)\mathbf{i}](https://img.qammunity.org/2021/formulas/mathematics/high-school/anf3t52gt0m0rxlx5cctkm02gnfcyw32y9.png)
Explanation:
The quadratic equation to solve is:
![x^2+10=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/6zetz1z8icp8p4cqcgsxppbwhsvnrxcpia.png)
Since this equation is incomplete, we can solve it without using the quadratic solver formula.
Subtracting 10:
![x^2=-10](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2jrradpfqrn6wsnimfzm7lu0zmjudsnhy.png)
Taking square root:
![x=\pm√(-10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cayscbojxy3yzhhiis4cor8f3conv8ujig.png)
Recall the square root of a negative number leads to imaginary solutions where the Unit Imaginary Number (i) is used, where:
![\mathbf{i}=√(-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jxp4djbpyl757tzwdor8xi73z0rsaxpmkm.png)
The solutions to the equation are:
![x=\pm√(10)\mathbf{i}](https://img.qammunity.org/2021/formulas/mathematics/high-school/anf3t52gt0m0rxlx5cctkm02gnfcyw32y9.png)
Correct choice: C.
![x=\pm√(10)\mathbf{i}](https://img.qammunity.org/2021/formulas/mathematics/high-school/anf3t52gt0m0rxlx5cctkm02gnfcyw32y9.png)