93.2k views
3 votes
Write 2 of your a paragraphs and incorporate them into an essay. ( "essay "about how do we use algebra in everyday life? , and how are phones a great tool for marketing?)​

User Shari
by
4.9k points

2 Answers

1 vote
Big mako your a beast dude omg
User Texas
by
6.1k points
2 votes

Answer:

Mathematics is the key to opportunity. No longer just the language of science, mathematics now contributes in direct and fundamental ways to business, finance, health, and defense. For students, it opens doors to careers. For citizens, it enables informed decisions. For nations, it provides knowledge to compete in a technological community. To participate fully in the world of the future, America must tap the power of mathematics. (NRC, 1989, p. 1)

The above statement remains true today, although it was written almost ten years ago in the Mathematical Sciences Education Board's (MSEB) report Everybody Counts (NRC, 1989). In envisioning a future in which all students will be afforded such opportunities, the MSEB acknowledges the crucial role played by formulae and algorithms, and suggests that algorithmic skills are more flexible, powerful, and enduring when they come from a place of meaning and understanding. This volume takes as a premise that all students can develop mathematical understanding by working with mathematical tasks from workplace and everyday contexts. The essays in this report provide some rationale for this premise and discuss some of the issues and questions that follow. The tasks in this report illuminate some of the possibilities provided by the workplace and everyday life.

Page 10

Suggested Citation:"Part One: Connecting Mathematics with Work and Life." National Research Council. 1998. High School Mathematics at Work: Essays and Examples for the Education of All Students. Washington, DC: The National Academies Press. doi: 10.17226/5777.×

Add a note to your bookmark

Contexts from within mathematics also can be powerful sites for the development of mathematical understanding, as professional and amateur mathematicians will attest. There are many good sources of compelling problems from within mathematics, and a broad mathematics education will include experience with problems from contexts both within and outside mathematics. The inclusion of tasks in this volume is intended to highlight particularly compelling problems whose context lies outside of mathematics, not to suggest a curriculum.

The operative word in the above premise is "can." The understandings that students develop from any encounter with mathematics depend not only on the context, but also on the students' prior experience and skills, their ways of thinking, their engagement with the task, the environment in which they explore the task—including the teacher, the students, and the tools—the kinds of interactions that occur in that environment, and the system of internal and external incentives that might be associated with the activity. Teaching and learning are complex activities that depend upon evolving and rarely articulated interrelationships among teachers, students, materials, and ideas. No prescription for their improvement can be simple.

This volume may be beneficially seen as a rearticulation and elaboration of a principle put forward in Reshaping School Mathematics:

Step-by-step explanation:

User Jeroen
by
6.0k points