170k views
3 votes
Solve


\int e^x sin(x)dx

1 Answer

6 votes

Answer:


(1)/(2)e^x(\sin(x)-\cos(x))+C

Explanation:


\displaystyle \int e^x \sin(x) \:dx

Apply integration by parts:


\displaystyle \int u (dv)/(dx)\:dx=uv-\int v\: (du)/(dx)\:dx


\textsf{Let }u=e^x \implies (du)/(dx)=e^x


\textsf{Let }(dv)/(dx)=\sin(x) \implies v=- \cos(x)


\begin{aligned}\implies \displaystyle \int e^x \sin(x) \:dx & = -e^x \cos(x)-\int - \cos(x)\: e^x\:dx\\& = -e^x \cos(x)+\int \cos(x)\: e^x\:dx\\\end{aligned}


\displaystyle \textsf{Apply integration by parts to }\int \cos(x)\: e^x\:dx:


\textsf{Let }u=e^x \implies (du)/(dx)=e^x


\textsf{Let }(dv)/(dx)=\cos(x) \implies v=\sin(x)


\implies \displaystyle \int \cos(x) e^x \:dx & =e^x \sin(x)-\int e^x \sin(x)\:dx

Therefore:


\begin{aligned}\implies \displaystyle \int e^x \sin(x) \:dx & = -e^x \cos(x)+\left(e^x \sin(x)-\int e^x \sin(x)\:dx\right)\\\\\implies 2\int e^x \sin(x) \:dx & = -e^x \cos(x)+e^x \sin(x)\\ & = e^x(\sin(x)-\cos(x))\\\\\implies\int e^x \sin(x) \:dx & = (1)/(2)e^x(\sin(x)-\cos(x))+C \end{aligned}

User Jerome Dalbert
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories