170k views
3 votes
Solve


\int e^x sin(x)dx

1 Answer

6 votes

Answer:


(1)/(2)e^x(\sin(x)-\cos(x))+C

Explanation:


\displaystyle \int e^x \sin(x) \:dx

Apply integration by parts:


\displaystyle \int u (dv)/(dx)\:dx=uv-\int v\: (du)/(dx)\:dx


\textsf{Let }u=e^x \implies (du)/(dx)=e^x


\textsf{Let }(dv)/(dx)=\sin(x) \implies v=- \cos(x)


\begin{aligned}\implies \displaystyle \int e^x \sin(x) \:dx & = -e^x \cos(x)-\int - \cos(x)\: e^x\:dx\\& = -e^x \cos(x)+\int \cos(x)\: e^x\:dx\\\end{aligned}


\displaystyle \textsf{Apply integration by parts to }\int \cos(x)\: e^x\:dx:


\textsf{Let }u=e^x \implies (du)/(dx)=e^x


\textsf{Let }(dv)/(dx)=\cos(x) \implies v=\sin(x)


\implies \displaystyle \int \cos(x) e^x \:dx & =e^x \sin(x)-\int e^x \sin(x)\:dx

Therefore:


\begin{aligned}\implies \displaystyle \int e^x \sin(x) \:dx & = -e^x \cos(x)+\left(e^x \sin(x)-\int e^x \sin(x)\:dx\right)\\\\\implies 2\int e^x \sin(x) \:dx & = -e^x \cos(x)+e^x \sin(x)\\ & = e^x(\sin(x)-\cos(x))\\\\\implies\int e^x \sin(x) \:dx & = (1)/(2)e^x(\sin(x)-\cos(x))+C \end{aligned}

User Jerome Dalbert
by
3.3k points