125k views
2 votes
64x⁶-1
anyone asap please??​

1 Answer

4 votes


\bold{Hello!}\\\bold{Your~Answer~Is~Below!}

______________________________


\bold{Solution~Steps:}


1.)~Rewrite: 64x^6-1~as~(8x^3)^2-1^2


  • The~difference~of~squares~can~be~factored~using~the~rule:


a^2-b^2=(a-b)(a+b)


\bold{(8x^3-1)(8x^3+1)}


2.)~Rewrite:~8x^3-1~as~(2x)^3-1^3


  • The~difference~of~cubes~can~be~factored~using~the~rule:


a^3-b^3=(a-b)(a^2+ab+b^2)


\bold{(2x+1)(4x^2+2x+1}


3.)~Rewrite:~8x^3+1~as~(2x)^3+1^3


  • The~sum~of~cubes~can~be~factored~using~the~rule:


a^3+b^3=(a+b)(a^2-ab+b^2)


\bold{(2x+1)(4x^2-2x+1)}


4.)~Rewrite~the~complete~factored~expression:


  • The~following~polynomials~are~not~factored~since~they~do~not~have~any~rational~roots:


(4x^2-2x+1),~(4x^2+2x+1)

______________________________


\bold{Answers:}


  • Factored~Form:~\bold{(2x-1)(4x^2-2x+1)(2x+1)(4x^2+2x+1)}

  • Evaluated~Form:~\bold{(4x^2-1)((4x^2+1)^2-4x^2)}

______________________________


\bold{Hope~this~helps,}\\\bold{And~best~of~luck!}\\\\\bold{~~~-TotallyNotTrillex}

User Ermiya Eskandary
by
5.2k points