Answer:
4.9 feet
Explanation:
First, we need to determine the height of the building using the following:
![L^2 = H^2 + B^2](https://img.qammunity.org/2021/formulas/mathematics/college/e7vh3nbek8nocjnnr2dub1sogm0flxhyng.png)
Where
H = Height of the building
L = Length of the first ladder = 20ft
B = Distance from the base of the building = 10ft
So, we have:
![20^2 = H^2 + 10^2](https://img.qammunity.org/2021/formulas/mathematics/college/am0fpoj47xu5lfa3wlf82uw5quo8lw4oux.png)
![400 = H^2 + 100](https://img.qammunity.org/2021/formulas/mathematics/college/5vb8csfvgetvr4gcmz3hdh2vdrqm4p7bpu.png)
![H^2 = 400 - 100](https://img.qammunity.org/2021/formulas/mathematics/college/3c3jbyawfgw9502z4j229tqk2v3fapr4z5.png)
![H^2 = 300](https://img.qammunity.org/2021/formulas/mathematics/college/calwsi7tcobgljgngpbh2xcpfukvs79b9g.png)
![H = \sqrt{300](https://img.qammunity.org/2021/formulas/mathematics/college/yzkfgtsrvzzwo7s274tg6cn3sn6h6df41y.png)
Next, is to determine the distance of the new ladder from the base of the building (B) using Pythagoras theorem using:
![L_2^2 = H^2 + B_2^2](https://img.qammunity.org/2021/formulas/mathematics/college/k7bkxu3ul5e8o2jcw3j6605ru96f3t6x1n.png)
Where
--- Length of the second ladder
----- Height of the building
So, we have:
![18^2 = √(300)^2 + B_2^2](https://img.qammunity.org/2021/formulas/mathematics/college/exqux4nrrk2zw20afreqgqpa8gwsr3v64c.png)
![324 = 300 + B_2^2](https://img.qammunity.org/2021/formulas/mathematics/college/ykrkexnas3jwufsmlz0fu489c9ihigeh5u.png)
![B^2_2 = 324 - 300](https://img.qammunity.org/2021/formulas/mathematics/college/cbnv9wvwx39iyu16kgvpyo8mi0clw28n8m.png)
![B^2_2 = 24](https://img.qammunity.org/2021/formulas/mathematics/college/34msqfz8z5it0hn7300m0rbv8jip2wxgzr.png)
Solving for B2, we have:
![B_2 = \sqrt{24](https://img.qammunity.org/2021/formulas/mathematics/college/tt1vc6o1bztyzp6dtfjs33w9m568ah5lp0.png)
![B_2 = 4.9](https://img.qammunity.org/2021/formulas/mathematics/college/ot8ywyopue5rfc9wf0joaryvv574qt2yx6.png)