101k views
2 votes
If


\cos(330°) = ( √(3) )/(2)
Then prove that:

\cos(165°) = - ( √(3) + 1)/(2 √(2) )
Please help me!​

User Daxmacrog
by
4.4k points

1 Answer

4 votes

Answer: see proof below

Explanation:

Given: cos 330 =
(\sqrt3)/(2)

Use the Double-Angle Identity: cos 2A = 2 cos² A - 1


\text{Scratchwork:}\quad \bigg((\sqrt3 + 2)/(2\sqrt2)\bigg)^2 = (2\sqrt3 + 4)/(8)

Proof LHS → RHS:

LHS cos 165

Double-Angle: cos (2 · 165) = 2 cos² 165 - 1

⇒ cos 330 = 2 cos² 165 - 1

⇒ 2 cos² 165 = cos 330 + 1

Given:
2 \cos^2 165 = (\sqrt3)/(2) + 1


\rightarrow 2 \cos^2 165 = (\sqrt3)/(2) + (2)/(2)

Divide by 2:
\cos^2 165 = (\sqrt3+2)/(4)


\rightarrow \cos^2 165 = \bigg((2)/(2)\bigg)(\sqrt3+2)/(4)


\rightarrow \cos^2 165 = (2\sqrt3+4)/(8)

Square root:
√(\cos^2 165) = \sqrt{(4+2\sqrt3)/(8)}

Scratchwork:
\cos^2 165 = \bigg((\sqrt3+1)/(2\sqrt2)\bigg)^2


\rightarrow \cos 165 = \pm (\sqrt3+1)/(2\sqrt2)

Since cos 165 is in the 2nd Quadrant, the sign is NEGATIVE


\rightarrow \cos 165 = - (\sqrt3+1)/(2\sqrt2)

LHS = RHS
\checkmark

If \cos(330°) = ( √(3) )/(2) Then prove that: \cos(165°) = - ( √(3) + 1)/(2 √(2) ) Please-example-1
If \cos(330°) = ( √(3) )/(2) Then prove that: \cos(165°) = - ( √(3) + 1)/(2 √(2) ) Please-example-2
User Saranga B
by
4.7k points