Answer:
x = 9
Explanation:
Given equation:
![-4(2x + 5) + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/py83hx19i4hzsiphhl34dgkgnptba4968d.png)
Apply distributive property rule: x(y + z) = xy + xz
![\implies -4(2x + 5) + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/z2xzbhpq2zxlvqjvsqjy6xb6jdnq1sclci.png)
![\implies (2x * -4) + (4 * 5) + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/7p1t0r4igduwms4dd3gviw7a98tvg5fay1.png)
![\implies -8x - 20 + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/yj29hgvg2xyb989gebs0b22lrv6v5fsvhw.png)
Combine like terms on the left hand side to simplify the expression:
![\implies -8x - 20 + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/yj29hgvg2xyb989gebs0b22lrv6v5fsvhw.png)
![\implies x(-8 + 5) + 1(-20 - 1) = -48](https://img.qammunity.org/2023/formulas/mathematics/college/3d8t8rkq00icdn8sc09oyl29s20j60kslj.png)
![\implies x(-3) - 21 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/r8hrm9wwrkzb5n55akwiraml8ptjxkzgm4.png)
Add 21 on both sides to remove all the mathematical operations (addition, subtraction, multiplication, division) being performed on the L.H.S
![\implies-3x + 21 - 21 = -48 + 21](https://img.qammunity.org/2023/formulas/mathematics/college/j2giujmng4mbakzrcn6dtsv52y8osguzau.png)
![\implies -3x = -27](https://img.qammunity.org/2023/formulas/mathematics/college/n9kfknit3964wbvp54dmy72ju5ln3zhvzb.png)
Cancel the "-" by dividing "-1" both sides:
![\implies 3x = 27](https://img.qammunity.org/2023/formulas/mathematics/college/5x1rd7gl6s0txvv0ye7ae91t8rgpr9j2dq.png)
Divide 3 on both sides to isolate the coefficient from x.
![\implies (3x)/(3) = (27)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/g7kvogwknhuqv4xk0z7zogj0pfniozlle9.png)
![\implies \boxed{x = 9}](https://img.qammunity.org/2023/formulas/mathematics/college/2kao5yb4vdt38tywromlnazxmt15vlbb8u.png)
Check:
Now, let's check our answer. This can be done by substituting the obtained value of "x", into the given equation and simplifying it.
Correct/Incorrect:
If L.H.S = R.H.S, then the value of "x" is correct.
If L.H.S ≠ R.H.S, then we might have to recheck our work we did above.
![\implies -4(2x + 5) + 5x - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/z2xzbhpq2zxlvqjvsqjy6xb6jdnq1sclci.png)
Plugging x = 9 into the equation:
![\implies -4[2(9) + 5] + 5(9) - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/meo4okx0t996u2ym55zfzs1aw28kqa3p52.png)
Simplifying the expression using PEMDAS:
![\implies -4[18 + 5] + 5(9) - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/bweiu69sd358npasmxov8twk0wrgmofl4j.png)
Simplifying the expression inside the parentheses (18 + 5) and evaluating the product of 5 and 9:
![\implies -4[23] + 45 - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/33bj960epc8qwn903npigbhnq52t25qngk.png)
Opening the parentheses "-4[23]" and multiplying -4 and 23
![\implies -92 + 45 - 1 = -48](https://img.qammunity.org/2023/formulas/mathematics/college/dlzzr5x25cogi43fgyudgjxnkxhfjg3rct.png)
Subtracting 45 both sides of the equation:
![\implies -92 - 1 = -48 - 45](https://img.qammunity.org/2023/formulas/mathematics/college/99mcjwr2iitrg1m3wyrh2d6pixatexu1ix.png)
![\implies -92 - 1 = -93](https://img.qammunity.org/2023/formulas/mathematics/college/r6pg87gxv3vlo26j1e6khnzva4urpbtf3u.png)
Simplifying the L.H.S:
![\implies -93 = -93 \ \checkmark \checkmark](https://img.qammunity.org/2023/formulas/mathematics/college/v9cxpi2gwvegrqubpf34v5came29y8eo3n.png)
Therefore, our answer is correct.