23.7k views
2 votes
Day 4:

G.CO.5: Quadrilateral PQRS is shown on the coordinate plane.
Part A:
Quadrilateral PQRS is transformed by
translating it right 6 units and then
rotating it 90° clockwise about the
origin. Graph the image of
quadrilateral PQRS after these two
transformations.

Day 4: G.CO.5: Quadrilateral PQRS is shown on the coordinate plane. Part A: Quadrilateral-example-1
User BlueSword
by
4.7k points

1 Answer

4 votes

9514 1404 393

Answer:

see attached

Explanation:

Translation right 6 units adds 6 to every x-coordinate. Rotation 90° CW is the transformation (x, y) ⇒ (y, -x). The sequence of transformations gives ...

(x, y) ⇒ (y, -x-6)

Then the coordinates of the transformed figure are ...

P(-3, 7) ⇒ P'(7, -3)

Q(4, 12) ⇒ Q'(12, -10)

R(4, -2) ⇒ R'(-2, -10)

S(-3, -7) ⇒ S'(-7, -3)

Day 4: G.CO.5: Quadrilateral PQRS is shown on the coordinate plane. Part A: Quadrilateral-example-1
User Idan Ahal
by
4.5k points