Solutions :
1.
![\bf \frac{ {d}^(2) - 9 }{ {d}^(2) - 7d + 12 }](https://img.qammunity.org/2021/formulas/mathematics/high-school/t82i2gs8p7h9nvaz2gi35814q948vrj7xe.png)
![\tt : \implies \frac{ {d}^(2) - (3)^(2) }{ {d}^(2) - 3d - 4d + 12 }](https://img.qammunity.org/2021/formulas/mathematics/high-school/39gtm35nwwynr0c5pqrbplzklylvvoncna.png)
By using identinty a² - b² = (a + b)(a - b) in numerator and splitting method in denominator :
![\tt : \implies \frac{ (d+3)(d-3) }{ {d}^(2) - 3d - 4d + 12 }](https://img.qammunity.org/2021/formulas/mathematics/high-school/w7dmehqxhc1rexwkjo2dvq4dv5nl6b66pf.png)
![\tt : \implies ( (d+3)(d-3) )/(d(d - 3) - 4(d - 3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/haaxvmdqq1xx2goq83eetthl3i7kemh5ig.png)
![\tt : \implies \frac{ (d+3)\cancel{(d-3)} }{\cancel{(d - 3)}(d - 4)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/nlbwgn069zfiqmpcrkvgxj4j56sn8fbjfg.png)
![\tt : \implies (d+3)/(d - 4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xmj7mr8vw5k48v4qe6n9dav34k67uylwj0.png)
Hence, answer is
![\boxed{\bf (d+3)/(d - 4) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/4hky0aq1fjibrpflv90vx7iwxvd69qx5nv.png)
________________________________
2.
![\bf \frac{ {m}^(2) + 2mn + {n}^(2) }{ {m}^(2) - {n}^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/kditl2t1qe4qz8n6txe9rgikalj6tbasr6.png)
By using identinty a² + 2ab + b² = (a + b)² in numerator and a² - n² = (a + b)(a - b) in denominator :
![\tt : \implies ((m+n)^(2))/((m+n)(m-n))](https://img.qammunity.org/2021/formulas/mathematics/high-school/hvngk76tkf38tsrmwxyc728qpnxn4vzyhu.png)
![\tt : \implies \frac{\cancel{(m+n)}(m+n)}{\cancel{(m+n)}(m-n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/joxc7bosjk51lmorqwiox339wqytuz7xdh.png)
![\tt : \implies (m+n)/(m-n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dhjn29az5xg5j74qgij419cxjikwzblur8.png)
Hence, answer is
![\boxed{\bf (m+n)/(m-n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/3jci715p8twjlp989c2erdfz6xsy8zarxt.png)
________________________________
3.
![\bf \frac{{x}^(2) + xy - 6{y}^(2)}{{x}^(2) - 3xy + 2{y}^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/duxudpfwp15zh4fcnupxye0t5toiezb9ws.png)
By using splitting method in both numerator and denominator :
![\tt : \implies \frac{{x}^(2) + 3xy - 2xy - 6{y}^(2)}{{x}^(2) - xy - 2xy + 2{y}^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/bkvde7iq5y44sni3laa29s4ou5ygrlxb1y.png)
![\tt : \implies (x(x + 3y) - 2y(x + 3y))/(x(x - y) - 2y(x - y))](https://img.qammunity.org/2021/formulas/mathematics/high-school/gd3tgogabu5tbzvvfd7lb93y6axrdrmktf.png)
![\tt : \implies \frac{\cancel{(x-2y)}(x + 3y)}{\cancel{(x-2y)}(x - y)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/5m8qfyqiigvxwv0xvi325aebpjdvsqfhzw.png)
![\tt : \implies (x + 3y)/(x - y)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2ps581651jz0ghtc6m0pky9s2s1koipev0.png)
Hence, answer is
![\boxed{\bf (x + 3y)/(x - y)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/sazvihoxdqgu6eya84scsem2svpr2g3x47.png)