Answer:
![f(0)=-2\\f(1)=e-1](https://img.qammunity.org/2021/formulas/mathematics/college/sz8xu3nx5e9dw3papb0uxk59qvgkzkoq94.png)
Explanation:
According to intermediate value theorem, if a function is continuous on an interval
, and if
is any number between
and
, then there exists a value,
, where
, such that
![f(m)=k](https://img.qammunity.org/2021/formulas/mathematics/college/9b3yff9gam4p7g6vimh6zoheqoik3k8tah.png)
In the given question,
Intermediate Value Theorem is used to show that there is a root of the given equation in the specified interval.
Here,
![f(x)=e^x-3+2x](https://img.qammunity.org/2021/formulas/mathematics/college/bo8ubb6qgdmvpzx5tqkmkbtnze9xker9i2.png)
Put
![x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/6enp4x8l6ye502n229t5aopx507rpkpsln.png)
![f(0)=e^0-3+2(0)=1-3+0=-2](https://img.qammunity.org/2021/formulas/mathematics/college/jzttw8tumbbb9tbphzt67w807ef9mefnr5.png)
Put
![x=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/birdzplzsqyz85m2k3usjkocm1mbtrtowk.png)
![f(1)=e^1-3+2(1)=e-3+2=e-1](https://img.qammunity.org/2021/formulas/mathematics/college/t6l1pucces2mdnqn8n0vceebfay05xrsf4.png)