The price of one pound of banana = b
As one pound of oranges costs $0.75 more than one pound of bananas, so, the price of one pound of orange = b+0.75.
The price of 3 pounds of banana = 3b,
and the price of 2 pounds of oranges = 2(b+0.75).
Now, as she pays $4.50 for 3 pounds of bananas and 2 pounds of oranges.
So, for this situation the required equation is
3b + 2(b+0.75) =4.5
On solving this equation, we have
![\Rightarrow 3b+2b+2*0.75=4.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/czuyx6xqko7m1g27dniabnwy7nia0777x6.png)
![\Rightarrow 5b +1.5=4.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/1tzxhbgb647vvm7q0ubm36d843jm1s6156.png)
![\Rightarrow 5b =4.5-1.5=3](https://img.qammunity.org/2021/formulas/mathematics/high-school/2aauxcr68xqt09omvgyhoi7onx7emgt5jv.png)
![\Rightarrow b =\frac 3 5=0.6](https://img.qammunity.org/2021/formulas/mathematics/high-school/uj9aqa6ilglmfwkpxkjf0fjp9v4z9jlqww.png)
Hence, the price of one pound of banana = $ 0.60
and the price of one pound of orange
=b+0.75= 0.60+0.75=$1.35.