Answer:
Explanation:
In a rectangle KLMN, if the diagonals KM and LN intersect at O, then KO = ON
GIVEN
KO = 4y+6
ON = 3y+11
Equate
4y+6 = 3y+11
Collect like terms
4y-3y = 11-6
y = 5
KO = 4(5)+6
KO = 20+6
KO = 26
Note that KO = OM = LO = ON = 26
Hence ON = 26
For diagonal KM,
KO+OM = KM
KM = 26+26
KM = 52
LN = LO+ON
LN = 26+26
LN = 52
From.the digram, ∆KON is isosceles triangle hence <KON = KNO =32°
<KON = 180-(32+32)
<KON = 180-64
<KON = 116°
<ONM = 90-32
<ONM = 58°
∆ONM is also an isosceles triangle,
<ONM = <OMN = 58°
Hence <KMN = 58°