Answer:
First year = 30000
Second year = 12000
Explanation:
Given
![Loan = \$42000](https://img.qammunity.org/2021/formulas/mathematics/high-school/4bmwamvuhlu5i83zm1sboasxhamavxt04y.png)
Represent first year with f and second year with s.
So, we have:
![s + f = 42000](https://img.qammunity.org/2021/formulas/mathematics/high-school/7l4z19o4gso5dqd7jy2t6wlecktrxtu1rq.png)
and
![f = 3s - 6000](https://img.qammunity.org/2021/formulas/mathematics/high-school/yexj6fdl7a9o15x6py5w3evh8xi4zu9zqe.png)
Required
Solve for f and S
Substitute 3s - 6000 for f in the first equation.
![s + f = 42000](https://img.qammunity.org/2021/formulas/mathematics/high-school/7l4z19o4gso5dqd7jy2t6wlecktrxtu1rq.png)
![s + 3s - 6000 = 42000](https://img.qammunity.org/2021/formulas/mathematics/high-school/nvs4gt2r1blde3nwsalb3cmpauoncjy3bv.png)
![4s - 6000 = 42000](https://img.qammunity.org/2021/formulas/mathematics/high-school/8e41rgrjejwccd1zipg4e7sfdjc641hcx3.png)
Collect Like Terms
![4s = 42000 + 6000](https://img.qammunity.org/2021/formulas/mathematics/high-school/m1jdbeskrsyro6pk798lckhihb6r8dj85q.png)
![4s = 48000](https://img.qammunity.org/2021/formulas/mathematics/high-school/b2c0v3kab8ytqhczp0nctc8zg1egz97azx.png)
Solve for s
![s = 48000/4](https://img.qammunity.org/2021/formulas/mathematics/high-school/yelk4guh1ge0nulhqtwq1vx2vjfz41jpm4.png)
![s = 12000](https://img.qammunity.org/2021/formulas/mathematics/high-school/nc7ldwv1s6gglnzy33oexqb2cjtey38lhi.png)
Substitute 12000 for s in
![f = 3s - 6000](https://img.qammunity.org/2021/formulas/mathematics/high-school/yexj6fdl7a9o15x6py5w3evh8xi4zu9zqe.png)
![f = 3 * 12000 - 6000](https://img.qammunity.org/2021/formulas/mathematics/high-school/ofdv7l8nryozrr1hqhial7ja6pjh5qydt3.png)
![f = 36000 - 6000](https://img.qammunity.org/2021/formulas/mathematics/high-school/ibo83lgaxmq6tdw65584mt1sz5n73goyfz.png)
![f = 30000](https://img.qammunity.org/2021/formulas/mathematics/high-school/rz0z9zzeqonjeqgkpkm5ozqwfublsbi2vr.png)