125k views
3 votes
Given m<12 =121 and m<6 =75 find the measure of the missing angles

Given m<12 =121 and m<6 =75 find the measure of the missing angles-example-1
User Dramzy
by
7.7k points

1 Answer

3 votes

Answer:

a. m∠1 = 75°

b. m∠2 = 46°

c. m∠3 = 59°

d. m∠4 = 59°

e. m∠5 = 46°

f. m∠7 = 121°

g. m∠8 = 59°

h. m∠9 = 62°

i. m∠10 = 118°

j. m∠11 = 59°

k. m∠13 = 118°

i. m∠14 = 62°5

Example 5

m∠1 =78°

m∠2 = 102°

m∠3 = 59°

m∠4 = 102°

m∠5 = 38

m∠6 = 142°

m∠7 = 38°

m∠8 = 142°

m∠9 = 78°

m∠11 = 78°

m∠12 = 102°

m∠13 = 38°

m∠14 = 142°

Explanation:

a. m∠1 ≅ m∠6 (Alternate angle theorem)

m∠1 = m∠6 = 75° (Definition of congruency)

m∠1 = 75°

b. m∠12 = m∠5 + m∠6 (Angle addition postulate/Corresponding angles)

m∠5 = 121° - 75° = 46°

m∠5 = 46°

m∠2 ≅ m∠5 (Alternate angle theorem)

m∠2 = m∠5 = 46° (Definition of congruency)

m∠2 = 46°

c. m∠3 = 180 - (m∠1 + m∠2) (Angle subtraction and sum of angles on a straight line)

m∠3 = 180 - (75 + 46) = 59°

m∠3 = 59°

d. m∠4 = 180 - (m∠1 + m∠5)

m∠4 = 180 - (75 + 46) = 59°

m∠4 = 59°

e. m∠12 = m∠5 + m∠6 (Angle addition postulate/Corresponding angles)

m∠5 = 121° - 75° = 46°

m∠5 = 46°

f. m∠7 = m∠12 = 121° (Alternate angle theorem)

m∠7 = 121°

g. m∠8 = 180 - m∠7 = 180 - 121 = 59°

m∠8 = 59°

h. m∠9 + m∠5 + m∠8 = 180 (The sum of the interior angles of a triangle)

m∠9 = 180 - (59 + 59) = 62°

m∠9 = 62°

i. m∠10 = 180 - m∠9 = 180 - 62 = 118°

m∠10 = 118°

j. m∠11 = m∠8 = 59°

m∠11 = 59°

k. m∠13 = m∠10 = 118°

m∠13 = 118°

i. m∠14 = m∠9 = 62°

m∠14 = 62°

Example 5

m∠5 = m∠7 = 38

m∠5 = 38°

m∠6 = 180 - 38 = 142°

m∠6 = 142°

m∠8 = m∠6 = 142°

m∠8 = 142°

m∠12 = m∠10 = 102°

m∠12 = 102°

m∠11 = 180 - m∠12 = 180 - 102 = 78°

m∠11 = 78°

m∠9 = m∠11 = 78°

m∠9 = 78°

m∠1 = m∠9 = 78°

m∠1 =78°

m∠3 = 78°

m∠2 = m∠4 = m∠10 = 102°

m∠13 = 360 - (m∠3 + m∠6 + m∠12) = 360 - (78 + 142 + 102) = 38°

m∠13 = 38°

m∠15 = 38°

m∠14 = m∠16 = 180 - m∠15 = 180 - 38° = 142°

m∠14 = 142°

m∠16 = 142°

User Scooterlord
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories