4.6k views
3 votes
Can someone help me here please​

Can someone help me here please​-example-1

1 Answer

2 votes

Answer:

3) 670.7 °C (nearest tenth)

4) 818.2 torr (nearest tenth)

Step-by-step explanation:

Question 3

Charles's Law


\sf (V_1)/(T_1)=(V_2)/(T_2)\quad \textsf{(when pressure is constant and temperature is in kelvin)}

where:


  • \sf V_1 = initial volume

  • \sf V_2 = final volume

  • \sf T_1 = initial temperature

  • \sf T_2 = final temperature

Given values:


  • \sf V_1 = 3 L

  • \sf V_2 = 10 L

  • \sf T_1 = 10°C

Convert the temperature in Celsius to kelvin by adding 273.15:


\sf T_1 = 10 + 273.15 = 283.15 K

Substitute the given values into the formula and solve for T₂:


\implies \sf (3)/(10)=(283.15)/(T_2)


\implies \sf 3 \cdot T_2=283.15 \cdot 10


\implies \sf T_2=(2831.5)/(3)


\implies \sf T_2=943.83333...\:K

Converting kelvins back to Celsius:


\implies \sf T_2=943.83333...-273.15=670.68333...\:C^(\circ)

Therefore, the final temperature will be 670.7 °C (nearest tenth).

Question 4

Gay-Lussac's Law


\sf (P_1)/(T_1)=(P_2)/(T_2)\quad \textsf{(when volume is constant and temperature is in kelvin)}

where:


  • \sf P_1 = initial pressure

  • \sf P_2 = final pressure

  • \sf T_1 = initial temperature

  • \sf T_2 = final temperature

Given values:


  • \sf P_1 = 760 torr
  • 
    \sf T_1 = 27°C

  • \sf T_2 = 50°C

Convert the temperature in Celsius to kelvin by adding 273.15:


\sf T_1 = 27 + 273.15 = 300.15 K


\sf T_2 = 50 + 273.15 = 323.15 K

Substitute the given values into the formula and solve for P₂:


\implies \sf (760)/(300.15)=(P_2)/(323.15)


\implies \sf 760 \cdot 323.15=P_2 \cdot 300.15


\implies \sf 245594=300.15 \cdot P_2


\implies \sf P_2=(245594)/(300.15)


\implies \sf P_2=818.23754...\:torr

Therefore, the new pressure is 818.2 torr (nearest tenth).

User Alec Jacobson
by
4.3k points