115k views
1 vote
Sin5A/SinA-cos5A/cosA=4cos2A​

User Logan H
by
7.6k points

1 Answer

3 votes

Answer:

See Explanation

Explanation:


( \sin5A)/(\sin A) - ( \cos5A)/(\cos A) = 4\cos2A \\ \\ LHS = ( \sin5A)/(\sin A) - ( \cos5A)/(\cos A) \\ \\ = ( \sin5A \:\cos A - \cos5A \: \sin A)/(\sin A \:\cos A ) \\ \\ = ( \sin(5A -A ))/(\sin A \:\cos A) \\ \\ = ( \sin 4A)/(\sin A \:\cos A) \\ \\ = ( 2\sin 2A \: \cos 2A)/(\sin A \:\cos A) \\ \\ = ( 2 * 2\sin A \: \cos A \: \cos 2A)/(\sin A \:\cos A) \\ \\ = ( 4\sin A \: \cos A \: \cos 2A)/(\sin A \:\cos A) \\ \\ =4\cos 2A \\ \\ = RHS \\ \\ thus \\ \\ ( \sin5A)/(\sin A) - ( \cos5A)/(\cos A) = 4\cos2A \\ \\ hence \: proved

User Katalonis
by
8.2k points

Related questions

1 answer
1 vote
126k views
asked Sep 16, 2019 214k views
JeanK asked Sep 16, 2019
by JeanK
8.6k points
1 answer
3 votes
214k views
asked Jun 18, 2021 148k views
Manoj Nayak asked Jun 18, 2021
by Manoj Nayak
7.7k points
2 answers
3 votes
148k views