192k views
9 votes
Find the range of f(x)=3x^2+3

2 Answers

6 votes

Answer:


[3,\infty)

Explanation:


f(x)=3x^2+3\\\\f(x)=3(x-0)^2+3


\y\:\text{or} [3,\infty)

User Kajman
by
3.7k points
7 votes


\mathrm{Range\:of\:}3x^2+3:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:[3,\:\infty \:)\end{bmatrix}

Function range definition:

  • The set of values of the dependent variable for which a function is defined.

Vertex of
3x^(2) +3: Minimum:
(0,3)


\mathrm{For\:a\:parabola}\:ax^2+bx+c\:\mathrm{with\:Vertex}\:\left(x_v,\:y_v\right)


\mathrm{If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v


\mathrm{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v


a=3,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(0,\:3\right)


f\left(x\right)\ge \:3

User Kslstn
by
4.6k points