192k views
9 votes
Find the range of f(x)=3x^2+3

2 Answers

6 votes

Answer:


[3,\infty)

Explanation:


f(x)=3x^2+3\\\\f(x)=3(x-0)^2+3


\y\:\text{or} [3,\infty)

User Kajman
by
7.2k points
7 votes


\mathrm{Range\:of\:}3x^2+3:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:3\:\\ \:\mathrm{Interval\:Notation:}&\:[3,\:\infty \:)\end{bmatrix}

Function range definition:

  • The set of values of the dependent variable for which a function is defined.

Vertex of
3x^(2) +3: Minimum:
(0,3)


\mathrm{For\:a\:parabola}\:ax^2+bx+c\:\mathrm{with\:Vertex}\:\left(x_v,\:y_v\right)


\mathrm{If}\:a < 0\:\mathrm{the\:range\:is}\:f\left(x\right)\le \:y_v


\mathrm{If}\:a > 0\:\mathrm{the\:range\:is}\:f\left(x\right)\ge \:y_v


a=3,\:\mathrm{Vertex}\:\left(x_v,\:y_v\right)=\left(0,\:3\right)


f\left(x\right)\ge \:3

User Kslstn
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories