Answer:
![z=5(\cos(2.214) + i\sin(2.214))](https://img.qammunity.org/2023/formulas/mathematics/high-school/jkfcq6flyxt0izv9ntk3yh61ck4tautiu1.png)
Explanation:
The trigonometric form (polar form) of a complex number x + yi is given by:
![z=r(\cos(\theta) + i\sin(\theta))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ydd7k804wnxw5ywy3griin7pxwnbnw6h1c.png)
where:
- r is the magnitude (modulus) of the complex number.
- θ is the argument of the complex number.
The magnitude (r) can be calculated using the formula:
![r= |z|=√(x^2 + y^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/54bovihv5300p9gd4powdi70it0xpr6lpe.png)
In this case, x = -3 and y = 4, so:
![\begin{aligned}r &=|-3+4i|\\&= √((-3)^2 + (4)^2) \\&= √(9 + 16) \\&= √(25) \\&= 5\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5ldfnupxe9dap0ybw99t7okbbd0ta6tniu.png)
Now, find the argument (θ) by using the arctangent function:
![\theta = \arctan\left((y)/(x)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/auep2gbujy76imhj1b13aa3v1xolkd2s5j.png)
![\theta = \arctan\left((4)/(-3)\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gn460wegjr7xs2wemgsqczjnw986d4a4g2.png)
As θ is in quadrant II, we need to add π:
![\theta =\arctan\left((4)/(-3)\right)+\pi](https://img.qammunity.org/2023/formulas/mathematics/high-school/l168j6sfik0g49r2u7l7ztvy4iav7rtf2j.png)
![\theta = 2.21429743...\; \rm rad](https://img.qammunity.org/2023/formulas/mathematics/high-school/ee3s95bugsos263lrrvgucy3ln5nrfhs2y.png)
So, the trigonometric form of -3 + 4i where θ is measured in radians is:
![z=5(\cos(2.214) + i\sin(2.214))](https://img.qammunity.org/2023/formulas/mathematics/high-school/jkfcq6flyxt0izv9ntk3yh61ck4tautiu1.png)
![\hrulefill](https://img.qammunity.org/2023/formulas/mathematics/high-school/8mjyvmcwlr1k100ry8mllnuaeb75p6voyx.png)
Additional notes
If you want θ measured in degrees, the trigonometric form is:
![z=5(\cos(126.87^(\circ)) + i\sin(126.87^(\circ)))](https://img.qammunity.org/2023/formulas/mathematics/high-school/i5vp0nx39uijazwio29l3w9rtseoukvh8m.png)