197k views
18 votes
If f(x)=In(x) and g(x) is f(x) translated right one unit and down nine units then reflected over the x axis, what would g(30) be?

A. -5.9
B. -12.1
C. -12.4
D. -20.1​

User Madtracy
by
5.7k points

1 Answer

11 votes

Answer:

Translations


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}


y=-\:f\:(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}


y=f\:(-\:x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}

Parent function:
f\:(x) = \ln(x)

Translated right 1 unit:
f\:(x\:-1) = \ln(x - 1)

Then translated down 9 units:
f\:(x\: -1)-9 = \ln(x - 1) - 9

The reflected over the x-axis:
-\:[f\:(x\:-1) - 9] = -\ln(x - 1) + 9

Therefore,
g(x) = -\ln\:(x\:- 1) + 9

⇒ g(30) = - ln(30 - 1) + 9

= -3.36729... + 9

= 5.6 (nearest tenth)

If f(x)=In(x) and g(x) is f(x) translated right one unit and down nine units then-example-1
User Mylescc
by
5.7k points