197k views
18 votes
If f(x)=In(x) and g(x) is f(x) translated right one unit and down nine units then reflected over the x axis, what would g(30) be?

A. -5.9
B. -12.1
C. -12.4
D. -20.1​

User Madtracy
by
7.8k points

1 Answer

11 votes

Answer:

Translations


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}


y=-\:f\:(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}


y=f\:(-\:x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}

Parent function:
f\:(x) = \ln(x)

Translated right 1 unit:
f\:(x\:-1) = \ln(x - 1)

Then translated down 9 units:
f\:(x\: -1)-9 = \ln(x - 1) - 9

The reflected over the x-axis:
-\:[f\:(x\:-1) - 9] = -\ln(x - 1) + 9

Therefore,
g(x) = -\ln\:(x\:- 1) + 9

⇒ g(30) = - ln(30 - 1) + 9

= -3.36729... + 9

= 5.6 (nearest tenth)

If f(x)=In(x) and g(x) is f(x) translated right one unit and down nine units then-example-1
User Mylescc
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories