Answer:
Option (D)
Explanation:
If a point (h, k) divides the line segment having ends at
and
in the ratio of m : n then,
h =
![(mx_2+nx_1)/(m+n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e5b2zeqsltpammtucu80rhe60617dgalx5.png)
k =
![(my_2+ny_1)/(m+n)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9qybx09hhcogn1ottfuwdxcj6rfui3ufxt.png)
If a point Q(h, k) divides the segment with ends A(-4, 6) and B(6, 1) in the ratio of 3 : 2 then,
h =
![(3(6)+2(-4))/(3+2)](https://img.qammunity.org/2021/formulas/mathematics/college/ecd2qbq1a87y9sbg4bm7k232r4k8ejq49j.png)
=
![(18-8)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/y0a5h98cbf77pms2bqk07yx06duenppyrr.png)
h = 2
k =
![(3(1)+2(6))/(3+2)](https://img.qammunity.org/2021/formulas/mathematics/college/xsmecsi3afc17gee5pd4807b28bnqk593h.png)
=
![(3+12)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/q7nfy4l3roi05r07hxkgdyiv6if0nrx6e0.png)
k = 3
Therefore, Coordinates of the point Q are (2, 3).
Option (D) will be the answer.