Answer:
A) SE = 0.1118
B) 95% Confidence interval is;
-2.22 < μ1 - μ2 < -1.78
Explanation:
We are given;
Sample size; n = 60
Sample mean 1; x1 = 8
Sample mean 2; x2 = 10
Variance 1; v1 = 0.25
Variance 2; V2 = 0.5
Now,
Standard deviation is given by the formula ;
σ = √variance
Thus;
σ1 = √0.25
σ1 = 0.5
σ2 = √0.5
σ2 = 0.7071
Formula for standard error of mean is;
SE = σ/√n
Thus;
SE1 = 0.5/√60
SE1 = 0.06455
SE2 = 0.7071/√60
SE2 = 0.0913
The standard error of the difference between their mean scores would be;
SE = √[(SE1)² + (SE2)²]
SE = √(0.06455² + 0.0913²)
SE = 0.1118
Formula for 95% confidence interval is;
(x1 - x2) - ((Z_α/2) × SE) < μ1 - μ2 < (x1 - x2) + ((Z_α/2) × SE)
Where Z_α/2 is the critical value. At confidence interval of 95%, we have a critical value of 1.96 from tables.
Thus, plugging in the relevant values, we have;
(8 - 10) - (1.96 × 0.1118) < μ1 - μ2 < (8 - 10) + (1.96 × 0.1118)
-2.22 < μ1 - μ2 < -1.78