Complete Question
find a vector function that represents the curve of intersection of the two surfaces. The cylinder
an the surface
Answer:
The function is
![r(t) = 6cos(t) \ i + 6sin (t) \ j + 36costsint \ k](https://img.qammunity.org/2021/formulas/mathematics/college/tf7p2nslk5zbbx7n9yhh23mw558x4n56vb.png)
Explanation:
From the question we are told that
The equation of the cylinder is
The equation of the surface is z = xy
Generally the general form of this function is
![r(t) = x(t)i + y(t)j + z(t) k](https://img.qammunity.org/2021/formulas/mathematics/college/bxvr9zay95p2uymf977mfzrl0rbsc6fdj3.png)
Generally to confirm the RHS and the LHS of the equation for the cylinder
Let take x (t) = 6cos(t)
and y(t) = 6sin (t)
So
![x^2 + y^2 = [ 6cos(t)]^2 + [6 sin (t)]^2](https://img.qammunity.org/2021/formulas/mathematics/college/4r2i10nj08rxjkz4pd9f0hl4qqy13d8mac.png)
=>
![x^2 + y^2 = 6^2 cos^2t + 6^2 sin ^2t](https://img.qammunity.org/2021/formulas/mathematics/college/n8swolsg4z9ml0t67e35gbo3eojothuykz.png)
=>
Generally
![cos^2t + sin ^2t = 1](https://img.qammunity.org/2021/formulas/mathematics/college/1ci2vdou8nxpfecscu390p3rt84wvefwac.png)
So
So at x (t) = 6cos(t) and y(t) = 6sin (t) the RHS is equal to LHS
So
![z(t) = x(t) * y(t)](https://img.qammunity.org/2021/formulas/mathematics/college/8mm7eu0pea69x9jrbchr6cb2kntjabbmf2.png)
![z(t) = (6 cos(t)) * (6 sin(t))](https://img.qammunity.org/2021/formulas/mathematics/college/936mk39255ff8750onck49xc4gey6qkivy.png)
=>
![z(t) =36costsint](https://img.qammunity.org/2021/formulas/mathematics/college/onqvmn9afhhf0vg3oab8gupkof28ndwq4c.png)
So the function is
![r(t) = 6cos(t) i + 6sin (t) j + 36costsint k](https://img.qammunity.org/2021/formulas/mathematics/college/t6fwecz0irvcfbplmdzhbsg3efg3jpx4i6.png)