Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s1om3rzcnorfu9si84gajpl5k6jeoialwk.png)
Explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Derivative Rule [Product Rule]:

- Basic Power Rule:

- Trigonometric Differentiation:

- Derivative Property [Addition/Subtraction]:
![\displaystyle y'' = (d)/(dx)[\sin (x)] + (d)/(dx)[x \cos (x)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/9muwj4lrtppsdykpm77ijfcb0ks0pjwgxw.png)
- Derivative Rule [Product Rule]:
![\displaystyle y'' = (d)/(dx)[\sin (x)] + (x)' \cos (x) + x \big( \cos (x) \big)'](https://img.qammunity.org/2021/formulas/mathematics/high-school/c1faiuumusv23a3khfoqffg6br0ck48ivi.png)
- Trigonometric Differentiation:

- Basic Power Rule:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation