158,615 views
5 votes
5 votes
How can you prove that csc^2(θ)tan^2(θ)-1=tan^2(θ)

User Nayab Samar
by
2.8k points

1 Answer

23 votes
23 votes

Answer:

Make use of the fact that as long as
\sin(\theta) \\e 0 and
\cos(\theta) \\e 0:


\displaystyle \tan(\theta) = (\sin(\theta))/(\cos(\theta)).


\displaystyle \csc(\theta) = (1)/(\sin(\theta)).


\sin^(2)(\theta) + \cos^(2)(\theta) = 1.

Explanation:

Assume that
\sin(\theta) \\e 0 and
\cos(\theta) \\e 0.

Make use of the fact that
\tan(\theta) = (\sin(\theta)) / (\cos(\theta)) and
\csc(\theta) = (1) / (\sin(\theta)) to rewrite the given expression as a combination of
\sin(\theta) and
\cos(\theta).


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \left((1)/(\sin(\theta))\right)^(2) \, \left((\sin(\theta))/(\cos(\theta))\right)^(2) - 1 \\ =\; & (\sin^(2)(\theta))/(\sin^(2)(\theta)\, \cos^(2)(\theta)) - 1\\ =\; & (1)/(\cos^(2)(\theta)) - 1\end{aligned}.

Since
\cos(\theta) \\e 0:


\displaystyle 1 = (\cos^(2)(\theta))/(\cos^(2)(\theta)).

Substitute this equality into the expression:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots\\ =\; & (1)/(\cos^(2)(\theta)) - 1 \\ =\; & (1)/(\cos^(2)(\theta)) - (\cos^(2)(\theta))/(\cos^(2)(\theta)) \\ =\; & (1 - \cos^(2)(\theta))/(\cos^(2)(\theta))\end{aligned}.

By the Pythagorean identity,
\sin^(2)(\theta) + \cos^(2)(\theta) = 1. Rearrange this identity to obtain:


\sin^(2)(\theta) = 1 - \cos^(2)(\theta).

Substitute this equality into the expression:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots \\ =\; & (1 - \cos^(2)(\theta))/(\cos^(2)(\theta)) \\ =\; & (\sin^(2)(\theta))/(\cos^(2)(\theta))\end{aligned}.

Again, make use of the fact that
\tan(\theta) = (\sin(\theta)) / (\cos(\theta)) to obtain the desired result:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots \\ =\; & (\sin^(2)(\theta))/(\cos^(2)(\theta))\\ =\; & \left((\sin(\theta))/(\cos(\theta))\right)^(2) \\ =\; & \tan^(2)(\theta)\end{aligned}.

User Jjisnow
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.