185k views
18 votes
How can you prove that csc^2(θ)tan^2(θ)-1=tan^2(θ)

1 Answer

9 votes

Answer:

Make use of the fact that as long as
\sin(\theta) \\e 0 and
\cos(\theta) \\e 0:


\displaystyle \tan(\theta) = (\sin(\theta))/(\cos(\theta)).


\displaystyle \csc(\theta) = (1)/(\sin(\theta)).


\sin^(2)(\theta) + \cos^(2)(\theta) = 1.

Explanation:

Assume that
\sin(\theta) \\e 0 and
\cos(\theta) \\e 0.

Make use of the fact that
\tan(\theta) = (\sin(\theta)) / (\cos(\theta)) and
\csc(\theta) = (1) / (\sin(\theta)) to rewrite the given expression as a combination of
\sin(\theta) and
\cos(\theta).


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \left((1)/(\sin(\theta))\right)^(2) \, \left((\sin(\theta))/(\cos(\theta))\right)^(2) - 1 \\ =\; & (\sin^(2)(\theta))/(\sin^(2)(\theta)\, \cos^(2)(\theta)) - 1\\ =\; & (1)/(\cos^(2)(\theta)) - 1\end{aligned}.

Since
\cos(\theta) \\e 0:


\displaystyle 1 = (\cos^(2)(\theta))/(\cos^(2)(\theta)).

Substitute this equality into the expression:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots\\ =\; & (1)/(\cos^(2)(\theta)) - 1 \\ =\; & (1)/(\cos^(2)(\theta)) - (\cos^(2)(\theta))/(\cos^(2)(\theta)) \\ =\; & (1 - \cos^(2)(\theta))/(\cos^(2)(\theta))\end{aligned}.

By the Pythagorean identity,
\sin^(2)(\theta) + \cos^(2)(\theta) = 1. Rearrange this identity to obtain:


\sin^(2)(\theta) = 1 - \cos^(2)(\theta).

Substitute this equality into the expression:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots \\ =\; & (1 - \cos^(2)(\theta))/(\cos^(2)(\theta)) \\ =\; & (\sin^(2)(\theta))/(\cos^(2)(\theta))\end{aligned}.

Again, make use of the fact that
\tan(\theta) = (\sin(\theta)) / (\cos(\theta)) to obtain the desired result:


\begin{aligned}& \csc^(2)(\theta) \, \tan^(2)(\theta) - 1\\ =\; & \cdots \\ =\; & (\sin^(2)(\theta))/(\cos^(2)(\theta))\\ =\; & \left((\sin(\theta))/(\cos(\theta))\right)^(2) \\ =\; & \tan^(2)(\theta)\end{aligned}.

User Dsldsl
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories