Answer:
![(x-3)({x}^(2)+1)(x+2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nfzo7lel6uyhxvmd9byo92xgvocssejfen.png)
Explanation:
1) Factor
using Polynomial Division.
1 - Factor the following.
![x^4 - x^3 - 5x^2 - x - 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/fpj2ar52y4oo6obu065gs7n4wjqfemhlus.png)
2 - First, find all factors of the constant term 6.
![1, 2, 3, 6](https://img.qammunity.org/2023/formulas/mathematics/high-school/9oz3rkjvjo0t9ckbur77847830nfhln7gn.png)
3 - Try each factor above using the Remainder Theorem.
Substitute 1 into x. Since the result is not 0, x-1 is not a factor..
![1^4 - 1^3 - 5 * 1^2 - 1 - 6 = - 12](https://img.qammunity.org/2023/formulas/mathematics/high-school/sdgl9s27s65806wo1ycn6zrsze1gr10bxr.png)
Substitute -1 into x. Since the result is not 0, x+1 is not a factor..
![( - 1 ) ^ 4 - ( - 1 ) ^ 3 - 5 ( - 1 ) ^ 2 + 1 - 6 = - 8](https://img.qammunity.org/2023/formulas/mathematics/high-school/aqglq9o72vhmombc6p9zj99b2puze5w29q.png)
Substitute 2 into x. Since the result is not 0, x-2 is not a factor..
![{2}^(4)-{2}^(3)-5* {2}^(2)-2-6 = -20](https://img.qammunity.org/2023/formulas/mathematics/high-school/heus4luu2kqfrdasm30qez2ddewvx4bgyd.png)
Substitute -2 into x. Since the result is 0, x+2 is a factor..
![{(-2)}^(4)-{(-2)}^(3)-5{(-2)}^(2)+2-6 = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/dmbt19nbz0mckky4k0lyw1q2xlv2hvwk3e.png)
⇒
![x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7igjfvtlq1h6d84glo9srd6phj7ylh32cm.png)
4 - Polynomial Division: Divide
by
![x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7igjfvtlq1h6d84glo9srd6phj7ylh32cm.png)
![-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zyhrkp8948grsx3fcue37jow7ztb2ow3yv.png)
--------------------------------------------------------------
|
![-6](https://img.qammunity.org/2023/formulas/mathematics/college/o08oc32y1tdfy3t4ef303j64rf1ovu0ni6.png)
![2x^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/u0y5thiuxdlnmugkf2tlmydk0ymd5a83op.png)
------------------------------------------------------------
![-6](https://img.qammunity.org/2023/formulas/mathematics/college/o08oc32y1tdfy3t4ef303j64rf1ovu0ni6.png)
![-6x^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/hfscfwrz7iaixvjwusuhhs4arn4pvaxjkb.png)
---------------------------------------
![-6](https://img.qammunity.org/2023/formulas/mathematics/college/o08oc32y1tdfy3t4ef303j64rf1ovu0ni6.png)
---------------
5 - Rewrite the expression using the above.
![{x}^(3)-3{x}^(2)+x-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/atclreu732guq66iujmaohbd90l4rzp88p.png)
2) Factor out common terms in the first two terms, then in the last two terms.
![({x}^(2)(x-3)+(x-3))(x+2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zf89oty24bt9037i4t9dkm3azobimapix3.png)
3) Factor out the common term
.
![(x-3)({x}^(2)+1)(x+2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nfzo7lel6uyhxvmd9byo92xgvocssejfen.png)