Explanation:
Given the polynomial function P(x)=x^{5}-2x^{4}-7x^{3}+x^{2}+20,
p(10) is gotten by substituting x = 10 into the function and evaluating the output as shown;
P(10)=10^{5}-2(10)^{4}-7(10)^{3}+(10)^{2}+20
P(10)=100,000-2(10,000)-7(1000)+(100+20
P(10)=100,000-20,000-7,000+120
P(10)=80,000-7000+120
P(10)=73000-120
P(10)= 72, 880
When x = -8
P(-8)=(-8)^{5}-2(-8)^{4}-7(-8)^{3}+(-8)^{2}+20
P(-8)= -32,7682+2(4096)-7(512)+64+20
P(-8)= -32,7682+8192-3584+64+20
P(-8) = -322,990