20.6k views
4 votes
Let P(x)=x^{5}-2x^{4}-7x^{3}+x^{2}+20P(x)=x 5 −2x 4 −7x 3 +x 2 +20. Use synthetic division to find P(10) and P(-8).

User GrayFox
by
4.6k points

1 Answer

2 votes

Explanation:

Given the polynomial function P(x)=x^{5}-2x^{4}-7x^{3}+x^{2}+20,

p(10) is gotten by substituting x = 10 into the function and evaluating the output as shown;

P(10)=10^{5}-2(10)^{4}-7(10)^{3}+(10)^{2}+20

P(10)=100,000-2(10,000)-7(1000)+(100+20

P(10)=100,000-20,000-7,000+120

P(10)=80,000-7000+120

P(10)=73000-120

P(10)= 72, 880

When x = -8

P(-8)=(-8)^{5}-2(-8)^{4}-7(-8)^{3}+(-8)^{2}+20

P(-8)= -32,7682+2(4096)-7(512)+64+20

P(-8)= -32,7682+8192-3584+64+20

P(-8) = -322,990

User Justin Maat
by
5.3k points