Answer:
![\sf a) \quad P(contains\:apple)+P(contains\:blueberry)=(5)/(6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tq15g9rvaka5cshnk8d9eu0vw8mh3y8v77.png)
![\sf b) \quad P(contains\:apple\:or\:blueberry)=(11)/(15)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6gxaruqb6wmlu8lyzk5swhdu2bica9m7yt.png)
c) Not mutually exclusive events
Explanation:
From inspection of the Venn diagram:
- Total number of smoothies = 12 + 3 + 7 + 8 = 30
- Number of smoothies containing Apple = 12 + 3 = 15
- Number of smoothies containing Blueberry = 3 + 7 = 10
- Number of smoothies containing both Apple and Blueberry = 3
- Number of smoothies not containing Apple or Blueberry = 8
![\sf Probability\:of\:an\:event\:occurring = (Number\:of\:ways\:it\:can\:occur)/(Total\:number\:of\:possible\:outcomes)](https://img.qammunity.org/2023/formulas/mathematics/college/7eloctizz4bck4h5oqa5m8rmxi31of3oo0.png)
Let A = contains apple
Let B = contains blueberry
![\implies\sf P(A)=(15)/(30)=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xb6dbse0a7puewaa9fyfsd1nw9yi6cd7zt.png)
![\implies\sf P(B)=(10)/(30)=(1)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wdqz9lnh6hjcklabpjh238pujbnrcsx08c.png)
Part (a)
![\begin{aligned} \implies \sf P(A)+P(B) & =\sf (1)/(2)+(1)/(3)\\\\ & = \sf (3)/(6)+(2)/(6)\\\\ & = \sf (5)/(6)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/niusfx9cxswe93wh8hu28uqmymfk8xf34z.png)
Part (b)
![\textsf{Addition Law}: \quad\sf P(A\:or\: B) = P(A)+P(B)-P(A\:and\:B)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbiwdbg9r40lurjirqs8ns0xoqb1a6qujf.png)
Given:
![\sf P(A)+P(B)=(5)/(6) \quad \textsf{(from part a)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dets74b0mz9qup0mfd0n1wsprwz92e6zxy.png)
![\sf P(A\:and\:B)=(3)/(30)\quad \textsf{(where the circles overlap)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tigzdmke6q0jypjifg1556221waqgnmqeq.png)
![\begin{aligned}\implies \sf \sf P(A\:or\: B) &= \sf P(A)+P(B)-P(A\:and\:B)\\\\& =\sf (5)/(6)-(3)/(30)\\\\ & =\sf (25)/(30)-(3)/(30)\\\\ & =\sf (22)/(30)\\\\ & = \sf (11)/(15)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xya9c235mano3ayx9kovoxcogtjqegk7hb.png)
Or, we can simply read P(contains apple or blueberry) from the Venn diagram.
P(A or B) is the total of the numbers inside the circles divided by the total number of smoothies:
![\sf P(A\:or\:B) = (12+3+7)/(30)=(22)/(30)=(11)/(15)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6809w4l30zjxhayg4v07a3dfo8te51arpz.png)
Part (c)
For two events, A and B, where A and B are mutually exclusive:
![\sf P(A \: or \: B)=P(A)+P(B)](https://img.qammunity.org/2023/formulas/mathematics/high-school/mbwvmssrwbk6pdlgaejgk68vthvtra85rs.png)
Given:
![\sf P(A)+P(B)=(5)/(6) \quad \textsf{(from part a)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/dets74b0mz9qup0mfd0n1wsprwz92e6zxy.png)
![\sf P(A\:or\:B)=(11)/(15) \quad \textsf{(from part b)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/62mowg26v9b83ystqgm26b04p4uvm2egej.png)
![\sf As\:(11)/(15)\\eq (5)/(6) \implies P(A \: or \: B)\\eq P(A)+P(B)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ok4t1toz9v1z7fnezj4pw2d2to36inx2bg.png)
Therefore, choosing a smoothie containing apple and choosing a smoothie containing blueberry are NOT mutually exclusive events.