122k views
25 votes
If the distance between the point
A(x, 3) | B(-x, 2) is 5. Find the value of x

If the distance between the point A(x, 3) | B(-x, 2) is 5. Find the value of x-example-1
User Kumarprd
by
4.8k points

1 Answer

12 votes


\qquad\qquad\huge\underline{{\sf Answer}}


\textbf{Let's use distance formula here }~


\qquad \sf  \dashrightarrow \: d = \sqrt{(x2 - x1) {}^(2) + (y2 - y1) {}^(2) }


\textsf{The given points are :}


\qquad \qquad \tt A \: (x , 3)


\textsf{and}


\qquad \qquad \tt B \: ( - x , 2)

━━━━━━━━━━━━━━━━━━━━━


\textsf{It's given that the distance between the points is}
\textsf{ 5 units }


\qquad \sf  \dashrightarrow \: d = 5


\textsf{that is : }


\qquad \sf  \dashrightarrow \: \sqrt{( - x - x) {}^(2) + (2 - 3) {}^(2) } = 5


\qquad \sf  \dashrightarrow \: ( - 2x) {}^(2) + ( - 1) {}^(2) = 25


\qquad \sf  \dashrightarrow \: 4 {x}^(2) + 1 = 25


\qquad \sf  \dashrightarrow \: 4 {x}^(2) = 25 - 1


\qquad \sf  \dashrightarrow \: {x}^(2) = 24 / 4


\qquad \sf  \dashrightarrow \: x = √(6)


\textbf{Let's verify the result} ~


\textsf{plug the value of x as }
\bf{√(6)}


\qquad \sf  \dashrightarrow \: \sqrt{( - x - x) {}^(2) + (2 - 3) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{( - √(6)- √(6)) {}^(2) + (2 - 3) {}^(2) }


\qquad \sf  \dashrightarrow \: \sqrt{( - 2√(6)) {}^(2) + ( - 1) {}^(2) }


\qquad \sf  \dashrightarrow \:√(( 4 ×6) + 1 )


\qquad \sf  \dashrightarrow \: √(24 + 1)


\qquad \sf  \dashrightarrow √(25)


\qquad \sf  \dashrightarrow \: 5

hence, what we got is correct ~

User Ahruss
by
4.6k points