Answer:
m∠A = 39°
Explanation:
From the figure attached,
BE ≅ BC
m∠C = 32°
m∠BFD = 103°
In ΔBCE,
m∠E = m∠C = 32° [Since, BE ≅ BC]
m∠E + ∠C + m∠EBC = 180°
32° + 32° + m∠EBC = 180°
m∠EBC = 116°
m∠EBC + m∠EBA = 180° [Linear pair of angles]
116° + m∠EBA = 180°
m∠EBA = 64°
Similarly, m∠AFB + m∠DFB = 180° [Linear pair of angles]
m∠AFB + 103° = 180°
m∠AFB = 77°
Now in ΔAFB,
m∠A + m∠AFB + m∠FBA = 180° [Sum of internal angles of a triangle = 180°]
m∠A + 77° + 64° = 180°
m∠A = 39°