112k views
23 votes
A tangent PQ at a point P of a circle of radius. 5cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is :

A)12 cm

B) 13 cm

C) 8.5 cm

D) √119 cm​

User Gmponos
by
5.0k points

1 Answer

12 votes

Answer :


\boxed{D) √(119) \: cm}

Solution :

In the above figure, the line that is drawn from the centre of the given circle to the targent PQ is perpendicular to PQ.

And So, OP PQ

Using Pythagoras theorem in triangle ΔOPQ we get ,


\Longrightarrow\: OQ^2 = OP^2 + PQ^2


\: \: \: \: \: \: \: \: \: \: \: \:


\Longrightarrow\: (12)^2 = 5^2+PQ^2


\: \: \: \: \: \: \: \: \: \: \: \:


\Longrightarrow\: PQ^2 = 144-25


\: \: \: \: \: \: \: \: \: \: \: \:


\Longrightarrow\: PQ^2 = 119


\: \: \: \: \: \: \: \: \: \: \: \:


\Longrightarrow\: PQ = √(119)


\: \: \: \: \: \: \: \: \: \: \: \:

So, option D) √119 cm is the length of PQ.

A tangent PQ at a point P of a circle of radius. 5cm meets a line through the centre-example-1
User TheCodingFrog
by
4.7k points