This question is incomplete, the complete question is;
The displacement of a string carrying a traveling sinusoidal wave is given by y(x,t)=ymsin(kx - ωt -φ) .
At time t = 0, the point at x = 0 has velocity v₀ and displacement y₀.
The phase constant φ is given by tanφ =:
A) ωv₀ /y₀
B) ωv₀ y₀
C) v₀ /ωy₀
D) y₀ /ωv₀
E) ωy₀ /v₀
Answer:
E) ωy₀ /v₀
Step-by-step explanation:
Given that;
displacement of a wave is; y(x,t) = ym sin (kx - ωt - φ)
we differentiate the given equation with respect to time
d/dt (y(x,t)) = d/dt(ym sin(kx - ωt - φ) )
v(0,0)) = -ym ωcos (k(0) - ω(0) - φ) )
v₀ = -ym ωcos (-φ) ......... lets leave thisas equ 1
At t = 0, x = 0
the displacement of the wave is
y(0,0) = ym sin (k(0) - ω(0) - φ)
y₀ = ym sin(-φ) ..............let this be equ 2
y₀/v₀ = (ym sin(-φ)) / (-ym ωcos (-φ)) = ( -ym sin(φ)) / (-ym ωcos (φ))
(tanφ)/ω = y₀/v₀
tanφ = y₀ω/v₀
therefore the required value is y₀ω/v₀
option (E).