Answer:
The coordinates of b are: B=(-7,-8)
Explanation:
We are given the coordinates of the midpoint of
as M=(-5,-2).
We are also given the coordinates of A=(-3,4). The question requires us to calculate the coordinates of the other endpoint B.
Let (xb,yb) the coordinates of B. The coordinates of the midpoint can be calculated as follows:
![\displaystyle x_m=(x_a+x_b)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/o8nc8mjm9s6yv80pe1ngeba3mfnr3byyf9.png)
![\displaystyle y_m=(y_a+y_b)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gj8ic219saya2c105arhp1y9zsxjd0lrz8.png)
We know xa=-3 and xm=-5. Solve the first equation for xb:
![2x_m=x_a+x_b\Rightarrow x_b=2x_m-x_a](https://img.qammunity.org/2021/formulas/mathematics/high-school/i4taqbnbm8ecj33mw4xrsxdpfjd9vp2nzn.png)
Substituting:
![x_b=2\cdot (-5)-(-3)=-10+3](https://img.qammunity.org/2021/formulas/mathematics/high-school/7wmb1ibgmqxtk18rtrb11xfvml3id26mdu.png)
![x_b=-7](https://img.qammunity.org/2021/formulas/mathematics/high-school/edjps70kadkp17u1cul52p182wobhjzkej.png)
We can solve the second equation for xb and get:
![y_b=2y_m-y_a](https://img.qammunity.org/2021/formulas/mathematics/high-school/cw463wtxzqc0a29m77txmts3m593c5kr1e.png)
Since ya=4 and ym=-2, then:
![y_b=2\cdot (-2)-(4)=-4-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/orytp4ry7z1syidbjzqbcitxh3i2dvmt04.png)
![y_b=-8](https://img.qammunity.org/2021/formulas/mathematics/high-school/3dbupx0jov1k6yd2vis8ux7h8avlmxvtsp.png)
Thus, the coordinates of b are: B=(-7,-8)