58.2k views
1 vote
Find the values of R, P, and Q that make the polynomial addition problem true. Write your answer in this order: R, P, Q. \left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7 (12x 5 +Rx 4 +Px 2 −5)+(−6x 5 −4x 4 +13x+Q)=6x 5 +3x 4 +9x 2 +13x+7

1 Answer

6 votes

Given:


\left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7

To find:

The values of R, P and Q.

Solution:

We have,


\left(12x^5+Rx^4+Px^2-5\right)+\left(-6x^5-4x^4+13x+Q\right)=6x^5+3x^4+9x^2+13x+7

On combining like terms, we get


(12x^5-6x^5)+(Rx^4-4x^4)+Px^2+13x+(Q-5)=6x^5+3x^4+9x^2+13x+7


6x^5+(R-4)x^4+Px^2+13x+(Q-5)=6x^5+3x^4+9x^2+13x+7

On comparing the coefficients of
x^4, we get


R-4=3


R=3+4


R=7

On comparing the coefficients of
x^2, we get


P=9

on comparing the constants, we get


Q-5=7


Q=7+5


Q=12

Therefore,
R=7,P=9 and
Q=12.

User Serge Bilyk
by
5.3k points